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Turbulence in the solar wind viewed as an anisotropic big-bang

Introduction

Several properties however seem to be at odd with usual admitted 
properties of  turbulence
1. Deviations from the standard critical balance theory:
•the spectral anisotropy (Forman Wicks Horbury (2011) is best explained by a 
contribution of  // wavevectors in contrast to the critical balance prediction
•the galactic cosmic ray modulation also requires a turbulence with a strong 
contribution of  wavevectors // to mean field (Chandran 2000)
•the flat ( ∝ k-3/2) scaling of  the velocity spectrum (Salem 2000, Podesta 
2007, Salem Mangeney Bale Veltri 2009)
•important deviations from gyrotropy around the mean field exist (Saur & 
Bieber 1999, Narita et al 2010)
2. Other specific properties:
•the large magnetic excess found in slow streams (Grappin et al 1991)
•the ordering of  polarizations (Belcher & Davis 1971)
•the large cross-helicity in fast streams
•the large-scale k-1 scaling atop of  the inertial range (figure below)

Double scaling-law
• k-1 range has tNL > transport time from corona (Carbone Bruno)
⇒ fossil of  coronal turbulence remains k-1 as 
• k-5/3 range has tNL < transport time (e.g. Tu et al, 1984)
⇒ active nonlinear cascade range
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Abstract
We report here the first results of  3D MHD simulations of  turbulence embedded in the solar wind between 0.2 and 1.5 AU. The model (expanding box 
model) incorporates correctly the basic effects of  wind expansion into the MHD equations. Our main results are (i) Expansion breaks gyrotropy, that 
should lead to modify the expression of  the injection rate (ii) Expansion induces the selective decay of  the different polarizations that determines 
the emergence of  coherent structures like microjets  (iii) Expansion, together with nonlinear coupling, contribute to drive the dominance of  the 
magnetic spectrum over the velocity spectrum.

The sketch above represents the evolution of  a plasma box advected by a uniform 
radial solar wind with speed U°, starting at distance r=R° with a uniform aspect 
ratio. Due to the radial wind, the volume is stretched in the two transverse 
directions and shows an aspect ratio ≈ R/R° as distance has increased from R° to 
R. This has taken a time t = (R-R°)/U°. 
Below a sketch of  the EBM model, that uses a pseudo-cartesian coordinate 
systems (x,y,z) with transversed coordinates comobile with wind expansion.

Evolution of  a plasma box in the expanding box model

Sun

Expanding box model

What expansion does
Sketch of  turbulent cascade (homegeneous)

1/L

Helios: Magnetic spectra at 0.3, 0.7 and 0.9 AU





fossil range Energy cascade

fossil range shifts to 
the left as R increases

f°=U°/L

Def.: fossil range has NL 
time slower than transport time
⇒ fossil range keeps k-1 
imprint of  coronal cascade
(Verdini et al 2012)

Hyp.: Inertial range 
in expanding wind 
due to quasi-
standard NL 
interactions, BUT 
injection rate 
computed on scale L 
= largest non-
linear scale

Results (1) Emergence of structures & energy/spectral evolution

Run B (no mean field). Magnetic (left) and Velocity (right) flowlines

Emergence of  coherent structures by selective decay of  polarizations

Bottom panels: initial conditions 
at 0.2 AU
Top: evolution at 1 AU 
Left: Magnetic field lines
Right: Velocity field lines

Magnetic field lines become 
⊥ to the radial 

Radial streamlines emerge, 
resembling microjets. 

This results mainly from the 
selective decay of  polarizations 
Bx, Uy, Uz at large scales, due 
to expansion, i.e., to 
conservation of  magnetic flux 
and angular momentum :
Bx≈ 1/R
Uy, Uz ≈ 1/R
while other polarizations 
remain constant

No such selective decay is 
observed in the test 
homogeneous simulations.

Damping of  total (kinetic+magnetic) energy per unit mass

List of  runs
A:  =0, B°=0
B:  =2, B°=0
C:  =0, B°=2     (radial mean field)
D: =2, B°=2     (radial mean field)
E:  =2, B°=(2,0.2)   (oblique mean field)

Energy and spectral evolution

Right: 
•formation of  a short 
K-5/3 range
•progressive 
disappearance of  the 
initial k-1 scaling

NB Kx = radial 
wavenumber

1D reduced radial total energy spectra compensated by k-5/3

Above
Left: energy decrease with time t
Right: energy decrease with distance R/R°
•No expansion: mean field slows down energy decrease
•With expansion: mean field accelerates energy decrease

Initial conditions
Initial distance R°=0.2 AU: isotropic, incompressible (divu=0) K-1 spectrum, with equipartition u2 ≈ B2 
Zero velocity-magnetic field correlation, Mach ≈ 0.12, MAlfvén≈0.5 for runs C, D, E
Expansion parameter  = divU/(k°u) = 2 ⇒ expansion twice as fast as turnover for largest eddies
(k° = minimum wavenumber = 1; u = rms velocity, divU ≈ 2U°/R° = inverse of  transport time, U° = wind 
velocity)
Note Daily fluctuations in the wind have ≈2 (Grappin Velli Mangeney 1991)
NB. From now on, B is given in Alfvén speed units, i.e., normalized by √<>)
time is given in units of  largest scale nonlinear time

Observations by Coleman (1968) 
first reported power-law spectra for 
the magnetic energy on a large 
frequency range, suggesting a 
turbulent cascade. 
The associated energy flux flowing 
from large to small scales down to 
dissipative scales has been found to 
be indeed ≈ constant (Marino et al. 
2011).
A steep k//-2 scaling (instead of  
k-5/3) is found in directions // to 
the local mean magnetic field 
(Horbury et al 2008), as expected in 
strong homogeneous turbulence 
(critical balance theory). 

1. Selective decay of  mean quantities
Let us follow a plasma box advected by the solar wind, with uniform speed, 
expanding radially. During the transport (sketched below), the plasma box gets 
stretched in directions perpendicular to the radial, so that the different faces of  
the box increase aither increase as distance R, or as distance squared. Due to this 
stretching, average (or total) quantities vary:
• mass is conserved, so the mean density decreases as 1/R2

• magnetic flux is conserved, so Br ∝ 1/R2, B, ∝ 1/R
• angular momentum is conserved, so Ur ∝ constant, U, ∝ 1/R
• pressure decreases adiabically at lowest order, so P ∝ 5/3 ∝ R-10/3

2. Transverse stretching of  structures
The expansion of  the box is, due to the radial wind, anisotropic, being only in the 
two directions transverse to radial (see sketch below)
To take it into account, one has to switch to comobile coordinates that follow the 
transverse expansion.

The EBM
This leads finally to the modified MHD equations, written for the basic 8 MHD 
fields, (density , pressure P, magnetic field B and velocity fluctuation U), where 
U = V - U°êr, V being the total velocity, and U° the average wind speed.

Evolution of  a plasma box advected by a radial, uniform wind

Sun

SW turbulence: ordinary turbulence?

SW turbulence: odd turbulence?



Results (2) Spectral anisotropy

Magnetic energy spectra isocontours at time t=2 in (Kx, K⊥) plane

Building spectral anisotropy (1) Nonlinear cascade vs transverse expansion 

Run D: radial mean field Run E: oblique mean field

Homogeneous runs: A & C "Expanding" runs: B & D

Run A (test case)
no mean field, no expansion
Cascade is isotropic, as shown by 
black points (thick line) measuring 
the isocontours aspect ratio at each 
wavenumber

Run C (test case)
with mean field B°=(2,0), no expansion
Dominant cascade is perpendicular 
to radial, being ⊥ to mean field, as 
coupling is more resonant in the 
directions ⊥ to mean field, here the 
radial

Run B
no mean field
Dominant cascade is radial
as shown by aspect ratio
Interpretation (below) is that 
kinematic expansion ⊥ to radial 
fights against nonlinear cascade in 
the ⊥ directions

Run D
with mean field B°=(2,0)
Dominant cascade is radial
due to fight between
(i) nonlinear-coupling favoring ⊥ 
directions
(ii) kinematic ⊥ expansion

Building spectral anisotropy (2) generalizing to oblique field

Sketch of  
(homogeneous) 
cascade ⊥ to mean 
field

Sketch of  (no mean 
field) cascade with 
kinematic 
compression ⊥ to 
radial

True isocontours in 
the two cases: run D 
left, run E right.

The most realistic oblique field case shows scale-dependent anisotropy:
• radial cascade dominates at the largest scales (see bottom panel, right)
• oblique cascade (⊥ to mean field) more and more dominant at smaller scales.
However, the imprint of  the kinematic transverse expansion appears even at small scales
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Results (3) Anisotropic 
damping

Magnetic energy modes vs heliocentric distance

Above: Run E, oblique mean field, decay of  magnetic energy at different 
increasing wavenumbers

Below: isocontours of  power-law index  of  radial decay rate computed 
during a limited time interval 1.4<t<1.8 (0.76<R<0.96 AU), for three runs
B, D, E.
solid:  =1; dashed:  =2; dotted:  =3
Radial decay is always fastest at all scales than perpendicular decay.
Run E with oblique field shows fight between oblique (mean field) and radial 
symmetry: gyrotropy is NOT satisfied at all scales.

Kx=1
Kx=2
Kx=4
Kx=8

Kx=64

1/R

1/R2

1/R3

run B: no mean 
field

run D: radial mean 
field

run E: oblique 
mean field mean
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ld 
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radial axis

mean field axis
radial axis

radial axis

Radial decay index for total energy vs wave vector

Results (4) Polarization 
anisotropy

Wind data (high-frequency range)

Polarization spectra (Wind data)

By

Bx Uy

Ux

By

Bx

Uy

Ux

Magnetic
f-5/3 inertial
range

"fossil"
f-1 range

Transverse 
structures

Magnetic
f-5/3 inertial
range

Magnetic
f-5/3 inertial
range Dissipative

range

f  [Hz]

Inertial range dominance of  magnetic spectrum over kinetic spectrum can 
be explained as in Müller & Grappin 2005 by a competition between:
• linear Alfvén effect that forces equipartition (i.e. propagation along local 
mean field)
• nonlinear local dynamo that transforms kinetic into magnetic energy

The spectral variation of  the magnetic excess is explained as follows:
• Alfvén effect wins at small scales
• nonlinear dynamo wins at large scales

Due to conservation of  magnetic flux and angular momentum, expansion 
• enhances magnetic excess for ⊥ polarizations
• decreases magnetic excess for radial polarizations

Conclusion

We have shown that expansion
• breaks the gyrotropy around the mean field that is usually assumed to be true on the basis of  non-expanding phenomenologies of  turbulence
• leads to coherent structures akin to observed ones (e.g., microjets)
• leads to magnetic excess as observed, the excess vanishing at the high end of  the MHD inertial range

Future work using 3D expanding box model will
• consider separately fast and slow winds
• consider more realistic initial coronal conditions, as
- non-isotropic conditions
- dominance of  outward propagating waves when dealing with a mean magnetic field
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Run B: reduced polarization spectra E(Kx)


