Spectral anisotropy of MHD turbulence with large mean field: recent numerical results

- R. Grappin (1), W.-C. Müller (2), J. Léorat (1)
- 1: Meudon Observatory, 2: Max-Planck, Garching
- Knowledge on spectral anisotropy is necessary to predict phenomena such as turbulent dissipation and heating rates.
- Basic principles and phenomenologies are recalled.
- The case of high-resolution (1024³) incompressible MHD turbulence is studied.

Basic principles - incompressible limit

Incompressible => infinite β, *only Alfvén waves exist Notations:*

density ρ =1; B° = mean field = v_a = Alfvén velocity

•What do Alfvén waves to turbulence?

- 3D Navier-Stokes ($u\nabla u$) => Kolmogorov turbulence
- 3D MHD ($u\nabla u$ + propagation term B° ∇u) => different ?

Why should Alfvén waves change something?

- a) Because waves allow coherent nonlinear coupling only during short times
- b) Because waves do so only when wavevector is parallel to mean field

...Assume now a large mean field B°

Why should Alfvén waves change turbulent

cascade?

=>

A) Because NL terms are $\approx z^+(x,t)z^-(x,t) = f(x-v_at) g(x+v_at)$ => Coherent interactions limited to wave travel time: $\Delta t = L/v_a$ => Random successive interactions necessary to drive turbulent cascade -> large k B) Because waves do so only when wavevector is parallel to mean field (in perp direction, $v_a = \mathbf{k} \cdot \mathbf{B}^\circ \rightarrow 0$) => In perp direction, turbulence proceeds as without B field

> TWO theories of MHD turbulence : Theory A : based on A), neglects B) Theory B : based on B), neglects A)

Two theories of MHD (incompressible) turbulence

```
    A) Theory A (Iroshnikov-Kraichnan, 1964, 1965)
    •Random successive coherent interactions :

            → u≈ I<sup>1/4</sup> or E(k) ≈k<sup>-3/2</sup> spectrum

    •Ignore anisotropy !
```

B) Theory B (Goldreich-Shridhar, 1995)
Coherent interactions along perpendicular directions : → u_⊥≈ l_⊥^{1/3} or E(k_⊥)≈k_⊥-^{5/3} spectrum (Kolmogorov)
Neglect nonlinear interactions along B°; include *transport* of perp fluctuations by // waves: u∇u ≈ B.∇u ≈ B°.∇u ⇔ u_⊥/l_⊥ ≈ v_a/l_{//} But u_⊥ ≈ l_⊥^{1/3} ⇒ "critical balance":

$$k_{\prime\prime} pprox k_{\perp}^{2/3}$$

3

Numerical: new (B°=58b, 10243)

Anisotropy well visible in real space: small scales are largely perpendicular to B° (Müller, 2006)

... and old (MHD 2D, B°=1, 256²)

Temporal evolution of 2D energy spectrum (Grappin 1986)

- NB 2D MHD with mean field is NOT turbulent (spectrum around k⁻³)
- Nevertheless, one sees:
- a) Early cascade towards perpendicular scales (not here)
- b) Later isotropization towards parallel scales (here)

High resolution 3D: slopes depend on B° (Müller & Grappin, 2005)

Two spectra **show definite power laws** : (1)Total energy $E^{tot}(k)$ = kinetic + magnetic

(2)Residual energy E^{res}(k) = magnetic -kinetic

Two regimes:

- B°=0 \rightarrow E^{tot} ≈ k^{-5/3} and E^{res}=k^{-7/3}
- B° large \rightarrow E^{tot} \approx k₁-^{3/2} and E^{res}=k₁-²

=> Single relation (valid whatever B°):

 $\mathsf{E}^{\mathsf{Res}}(\mathsf{k}) = \mathsf{k}(\mathsf{E}^{\mathsf{Tot}}(\mathsf{k}))^2 \qquad (*)$

 relation (*) results from competition between wave equipartition effect ("Kraichnan effect") and generalized dynamo effect

=> waves DO have a direct influence on turbulence ! ⁷ (cf. Grappin et al., 1983)

High resolution 3D: slopes depend on B° Total energy has definite slope

Time-averaged spectra, wavenumbers normalized by $k_{dissipative}$ Müller Grappin PRL 95, 114502, 2005

Müller Grappin PRL 95, 114502, 2005

Measuring Anisotropy in 3D simulations: two

methods

Consider a 3D simulation with strong B°

(1) Plot isocontours of the $E(k_{//},k_{\perp})$ deduced from the 3D spectrum by integrating on the two perp directions.

Pick $(k_{//},k_{\perp})$ pairs with given energy => plot relation $k_{//}(k_{\perp})$ Fit with the **anisotropy INDEX q** :

q=1 means isotropy; q=2/3 is the GS prediction

(2) Do same, but use (k_{//},k_⊥) pairs deduced from *1D spectra*, defined NOT as in (1) from E(0,k_⊥) and E(k_{//},0), but as *integrals*:

$$E(\mathbf{k}_{\perp}) = \int d\mathbf{k}_{//} E(\mathbf{k}_{//}, \mathbf{k}_{\perp})$$
$$E(\mathbf{k}_{//}) = \int d\mathbf{k}_{//} E(\mathbf{k}_{//}, \mathbf{k}_{\perp})$$

10

High resolution 3D (B°=5): anisotropy index

High resolution 3D (B°=5): anisotropy index

Discussion

- Method 2 \rightarrow q=0.8 on k-inverval much larger than inertial range
- Several authors find q=2/3 ("critical balance") (eg Cho et al 2003, Maron and Goldreich 2001).
- Difference may be due to our larger resolution, or to method, or to different turbulence regimes.
- In conclusion:
- (1) our previous results on case $B^\circ=5$ on spectral slopes:
- k^{-3/2} total energy, k⁻² residual energy
- (2) our present finding q=0.8
- (1)+(2) support IK phenomenology, i.e., *some nonlinear interactions occur // B*°

Bibliography

Cho *et al.* 2003, *ApJ* **595**, 812 Goldreich & Sridhar 1995, *ApJ* **438**, 763 Grappin Pouquet Léorat 1983, A&A **126**, 51 Grappin 1986, Phys. Fluids **29**, 2433 Iroshnikov 1964, *Sov. Astron.* **7**, 566; Kraichnan 1965, *Phys. Fluids* **8**, 1385 Müller & Grappin 2005, Phys. Rev. Lett. **95**, 114502 13