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Three-dimensional Iroshnikov-Kraichnan turbulence in a mean magnetic field

Introduction
When a strong mean magnetic field B° is present, incompressible MHD 
turbulence produces small scales mainly in directions perpendicular to the 
mean field, because only in these directions will non-linear couplings be 
resonant.
The classical scenario (since Goldreich & Sridhar 1995 - GS) predicts in 
this case a strong cascade with a 1D energy spectrum scaling as E(k⊥) ∝ 
k⊥-5/3, with possibly at large scales a k⊥-2 scaling, characteristic of  a weak 
cascade, if  large enough Alfvén waves with parallel waveverctors are 
present, thus leading to a weak turbulent regime with non-resonant 
couplings in this large-scale range. 
Recently, we have analyzed a different regime (Müller Grappin 2005, 
Grappin Müller 2010 - GM10) in which the cascade is much more 
isotropic, that is, a k-3/2 scaling is found in all directions of  Fourier space, 
with however a strong anisotropy in amplitude, thus making a bridge 
between the isotropic weak regime of  Iroshnikov (1965) and Kraichnan 
(1967) (IK) and the classical perpendicular GS cascade. 
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Abstract
The Iroshnikov-Kraichnan cascade has been proposed in 1965-67 as a weak, quasi-isotropic turbulence theory that extended the Kolmogorov cascade to 
MHD. When a strong mean field is present, the more recent (Goldreich-Sridhar 1995) theory does not eliminate the possibility of  weak turbulence in 
MHD (see Galtier et al 2000), but forces the cascade to be quasi-perpendicular. We show that other possibilities exist, which leads to a revival of  IK 
cascade in a 3D version with a mild anisotropy.
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The sketch below represents the first theory of  turbulence driven by 
Alfvén waves coupling. Coupling occurs only between waves with opposite 
cross-helicity (z+= u+b and z-=u-b fields).
These waves propagate fast in opposite directions (we neglect those with 
wavenumbers perpendicular to the mean field), so many successive 
interactions are necessary for energy to cascade.
The effective energy transfer time is thus larger than the Kolmogorov 
nonlinear time tNL = 1/(ku), where k is wavenumber and u the amplitude at 
the scale 1/k.
The effective transfer time is t* = tNL (B°/u). The cascade is thus 
characterized by an energy flux
F = u2/t* = ku4/B°
which finally leads to u ≈ k-1/4 hence the energy spectrum E(k) ≈ u/k:
E(k) ≈ k-3/2

Sketch of  isotropic IK cascade

B°

+

Strong ⊥ 
Kolmogorov 
cascade k⊥-5/3

Weak ⊥ 
cascade k⊥-2

Sketch of  anisotropic GS cascade

The sketch below represents the modern (GS) theory of  MHD turbulence 
with mean field, designed to take into account anisotropy wrt mean field 
direction. Two situations are considered: 
(i) substantial amplitude of  large-scale parallel Alfvén waves ⇒ the cascade 
is weak (but purely perpendicular) 
(ii) no such Alfvén waves ⇒ the cascade is the strong Kolmogorov one. 
The mean field here has the sole effect of  constraining the cascade to be 
perpendicular.

The two successive weak/strong 
cascades with the -2 and -5/3 1D 
scaling for the total perpendicular 
energy spectrum (kinetic
+magnetic) have been obtained 
here via a multi-shell model of  
reduced MHD, allowing to reach 
a Reynolds number ≈ 106, with 
104 grid points in the direction 
parallel to the mean field and a 
perpendicular resolution of  220, 
thus 20 modes in each of  the 104 
perpendicular planes supporting 
the perpendicular cascade 
(Verdini Grappin, 2012).

Mean field is B°/brms=5, forcing 
is isotropic on 1≤k≤2, with short 
correlation time.

Turbulence is characterized by a 
limited parallel extension of  the 
spectrum, given by the large-scale 
conditions for the weak regime. 
On the left we show a snapshot 
solution in half  Fourier space. 
The parallel width of  the high-k⊥ 
tails is ∆X≈0.01, while the 
corresponding ⊥ width is 1/k⊥ ≈ 
2-17. In this regime critical balance 
between the non-linear and 
Alfvén times is satisfied:
k// ≈ k⊥2/3.

Isocontours of  the 3D energy 
spectrum in full Fourier space 
E3(k//,k⊥) (on the left) show that 
the main scaling is perpendicular 
(the reduced 1D spectrum 
∝k⊥-5/3), with secondary scalings 
in the parallel direction (see 
Verdini Grappin, 2012).
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GS perpendicular cascade: the multi-shell example

GM10 k-3/2 regime: 3D MHD simulation

A snapshot in real space is shown 
on the left. The magnitude of  the 
magnetic field is shown, revealing 
the much longer typical wavelength 
along the field than across it. 

The figure below (GM10) shows 
the 3D total energy spectrum, 
which appears to produce a single 
scaling in all directions: 
E3(k,) ≈ A() k-2-3/2

This is found by making radial cuts 
at different angles  wrt the mean 
field direction.

The three panels on the bottom 
figure show the method.
left: isocontours of  the 3D 
spectrum with radial lines at 
different angles ∈[0, /2];
middle: the resulting spectral 
densities E3(k,) vs k for different 
angles
right: same but compensated by 
k2+3/2. (Dotted: k-2-5/3).
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Remarks:
(i) the power-law range extends at most up to k=50 (see crosses in the right 
panel that mark the beginning of  the dissipation range)
(ii) A 3D index ≈ -(2+3/2) in all directions corresponds to a -3/2 1D index
(iii) the power-law range reduces as direction becomes more parallel
(iv) Scaling cannot be obtained for  ≤ 10° due to evident lack of  statistics
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The simulation has 
mean field 
B°/brms=5, with 
isotropic forcing on 
1≤k≤2, with 
infinite correlation 
time (frozen fields. 
Figure on the left 
shows 1D spectra 
and structure 
functions (SF)

SF(L)- = B2(L) = <(B(x+L)-B(x))2>
with L // or ⊥ to B°. They are strongly anisotropic: 
SF ∝ L⊥1/2 and ∝ L// (Müller et al 2003). Spectra E(k) ∝ k⊥-5/3 
In principle, one should have
SF(1/k) ≈ kE(k)  (1)
hence E(k//) ≈ k//-2; E(k⊥) ≈ k⊥-3/2

GM10: isotropic or anisotropic 
scaling?

A solution to the apparent 
contradiction between the anisotropic 
scalings obtained vis SF and the 
isotropic scaling of  the 3D spectrum 
consists in remarking that the SF are 
measured with respect to directions 
parallel or ⊥ to the local mean magnetic 
field, while the 3D spectrum is 
measured in an absolute frame, thus 
different from the previous one. 

However, this hypothesis is wrong, at 
least for the present value of  the ratio 
B°/brms = 5, as is shown in figure on 
the left.
The local SF have thick lines, the global 
SF have thin lines. The scaling laws are 
basically the same in both cases.

Local and global frames give the same SF

From 3D to 1D

Since, as we know now, SF measured in local or global frames are 
equivalent, we adopt the global frame. In this frame, there are two different 
ways to measure SF: either directly in real space, or indirectly by deducing it 
from the 3D spectrum. The latter may be done as follows.
(1) We deduce the 1D spectrum from the 3D spectrum by integrating on 
perpendicular directions the 3D spectrum.
(2) We deduce the SF from the 1D spectrum by using the equality
(E = total energy, E(k) = 1D reduced spectrum, F-1 the inverse Fourier 
transform):
SF(L) = 2(E - F-1(E(k))    (2)

The hypothesis we will test now is that the 3D → 1D reduction transforms 
the 3D strong amplitude anisotropy into a spectral slope anisotropy. 
There are indeed important non-scaling ranges in the 3D spectrum, which 
may be responsible of  that.
In the following, we will thus try to progressively eliminate the non-scaling 
parts of  the 3D spectrum and compute the associated SF and 1D spectra.

SF

Above we sketch the two transformations we want to apply to the 
3D spectrum (left panel shows the original 3D spectrum).
(1) Extrapolating small scales (SS)
We replace the dissipative tail by an exact k-2-3/2 law, starting at 
the start of  the dissipation range.
(2) Extrapolating large and small scales (LS and SS)
We replace the whole spectrum by an exact k-2-3/2 law, taking
the amplitude at the start of  the dissipative tail as a reference.

Original (1) SS extrapolation (2) LS & SS



 

GM10 phenomenology

We propose that the ⊥ cascade is a 2D version of  the isotropic weak IK 
cascade, based on the rms field amplitude brms (not B°). 
Basically, this is the sole hypothesis which allows to recover many observed 
properties of  the GM10 regime:
1. 1D k-3/2 scaling law for total energy
2. k-2 scaling for residual energy (magnetic - kinetic) (Müller Grappin 2005).
3. Correlation time for the signal at scale 1/k⊥ based on the ⊥ Alfvén 
period tA = 1/(k⊥brms). 
Note that in the opposite case of  a strong cascade the correlation time is 
equal to the nonlinear time tNL= 1/(k⊥u) ∝ k⊥-2/3, as found in multi-shell 
simulations by Verdini Grappin (2012).

On the nature of  the ⊥ cascade
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Critical balance applied to the ⊥ IK cascade
In the case of  the IK cascade, the critical 
balance argument is expressed as follows. 
(i) The correlation time of  perpendicular 
eddies is 1/(kbrms)
(ii) it is equal to the Alfvén period of  parallel 
Alfvén waves
In conclusion, the parallel width of  the 
spectrum should satisfy
∆k// = k⊥ brms/B°
as sketched in the left figure.
(Gray area denotes the forced area).
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Conclusion

The ricochet process

We assume that the GM10 regime relies on quasi-local interacting triads (k,p,q) 
that is k≈p≈q. The triads are such as to allow propagation along oblique lines 
crossing the origin (see lines A1 and A2 in the right panel below), in the region 
outside the critical balance region (1).
The signal is propagating from kn to kn+1, switching from line A1 to line A2 
and back to A1 etcc... , hence the name ricochet.
The triads that drive the ricochet process are represented in the left panel.
Wavevectors qn correspond to quasi-perpendicular modes (see below); the 
reservoir for these modes is found within the area labeled "1" that is bounded 
by the critical balance area for the perpendicular IK cascade.

We ask the coupling to be quasi-
resonant, which imposes to retain only 
triads veryfing tNL ≤ tA, which reads
qx B° ≤ q uq

This implies (see figure on the left) 
that only a fraction R of  the triads is 
to be retained, with
R = qx/q = uq/B°

Finally, this implies that the nonlinear 
energy flux F flowing along the 
oblique lines be reduced by the same 
factor R:

Quasi-resonant condition, flux reduction and oblique 
scaling

F = uk2/tNL = kuq uk2 → kuq uk2 (uq/B°) = kuq2 uk2 /B°

In a stationary cascade, the flux is scale-independent (F = constant); then, 
replacing uq by the perpendicular IK scaling
uq ≈ q-1/4 
in the flux expression, we obtain
uk ≈ k-1/4 
which implies the IK scaling for the 1D reduced spectra in oblique 
directions E(k) ∝ k-3/2, and a 3D spectrum scaling as k-2-3/2.

Spectral aspect ratio

We can recover one of  the main property characterizing the anisotropy of  
the 3D GM10 spectrum, namely the ratio between the // and ⊥ inertial 
ranges. This is done by balancing the energy flux respectively in the ⊥ and 
oblique cascade; we obtain successively in the ⊥ and // directions:
k2 = kuq2/brms

k2 ≈ kuq2/B°
which leads to the aspect ratio
(kd)///(kd)⊥ = brms/B° 

The two regimes, GS and GM10, are found when isotropic forcing is used at large 
scales. We conjecture here that the bifurcation is controled by the properties of  large-
scale forcing., with the first regime resulting from forcing with short correlation time, 
and the 3D IK regime resulting from forcing with long correlation time.
We indeed found indications in this direction by studying the multishell system (Verdini 
Grappin 2012).
Published evidence for a strong effect of  varying the correlation time of  the forcing is 
to be found in Perez Boldyrev 2010, see figure below.

The two regimes are summarized above. The gray region represents large-scale forcing. 
1. Left, we represent the classical perpendicular cascade, with the weak cascade at the 
largest scales, the strong cascade at smaller scales and a mild parallel extension of  the 
spectrum.
2. Right, we represent the GM10 regime, in which the weak (2D isotropic) regime 
based holds in the perpendicular direction, with the oblique and parallel directions 
being excited by a strong cascade enslaved to the quasi-perpendicular IK cascade. We 
propose to call this true 3D cascade the IK cascade.

Note small-scale cross-helicity scaling (see Boldyrev, 2005) is not discussed here. The 
GM10 regime actually shows some small-scale cross-helicity scaling, that might play a 
role in the dynamics; we refer the reader to Grappin et al 2013 for a detailed discussion 
of  this issue.

Conjecture

(1) Standard ⊥ cascade (2) 3D IK cascade
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Above we show the effect of  extrapolating small scales. The arrows 
show the respective effect on the parallel and perpendicular directions, 
both for SF (left) and 1D spectra (right).
In both cases, the slopes become flatter, and the difference between the 
perpendicular and parallel scaling is much reduced.
The spectrum in particular shows an almost 3/2 scaling in the ⊥ as well 
as the // direction.
However, the SF anisotropy is still large. This difference between the SF 
and 1D spectral scalings comes from the fact that the relation (1) is valid 
only in the limit where a single power-law holds (either for SF or SP), 
which is clearly not the case here, in view of  the important large-scale 
non-scaling ranges.

2. LS and SS extrapolation

When both large and small scales are replaced by the ideal k-2-3/2 
scaling, the anisotropy between the parallel and perpendicular directions 
disappear for both the SF and SP. 
We conclude that the finite extent of  the scaling laws is responsible for 
the observed differences in 3D and 1D properties.

1. SS extrapolation

We propose here a phenomenology of  the GM10 cascade that will describe 
its main properties. This will be done in several steps. Note that our 
ambition is not to describe the detailed variation of  amplitude of  the 
spectrum in the radial power-law range, nor to describe the non-scaling 
properties (in particular the transition between the isotropic forced scales 
and the power-law range).
We instead propose two couples cascades, one in the perpendicular 
directions, the other one summarizing the cascade in the non-perpendicular 
directions, including the parallel one.
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