# Is there a turbulent cascade in the solar wind? Roland Grappin (LUTH, LPP) and Gérard Belmont (LPP)

This lecture deals with **large scale turbulence** in the solar wind, in the inner heliosphere,  $\approx$  3 decades above 5s period

Several indications support slow down of interactions in the solar wind, which could make turbulence differ from standard homogeneous MHD

We review <u>scaling</u>, <u>heating</u> and (spectral) <u>anisotropy</u> properties



Laboratoire de l'Univers et de ses Théories

### EGU 2011

# Magnetic scaling

Coleman (1968) first proposed that the observed power-law energy spectrum was the signature of a turbulent cascade



Strong (rapid) and weak (slow) turbulence

Kolmogorov 1941 Hypothesis: Inertial range scales with constant flux  $l^{\circ} > l > l_{D}$  $l^{\circ}$  = injection scale,  $l_D$  = molecular dissipation scale

Basic hypothesis: *continuous energy flux from l*° to *l*<sub>D</sub>  $\varepsilon_l = \operatorname{cst} = \varepsilon \Longrightarrow \operatorname{Flux} \varepsilon \approx \mathbf{u}^2 / \tau = \operatorname{cst} (*)$ 

### 1. Strong coupling

short time scale  $\tau = t_{NL} = l/u$  (1A) K41 scaling:  $u^3 \approx l$ ;  $u \approx l^{1/3}$ ;  $u^2 = l^{2/3}$ ; ...  $u^p \approx l^{p/3}$ Energy spectrum:  $u^2 \approx kE_k = E_k = k^{-5/3}$  (1B)

2. Slow coupling (Iroshnikov 1963, Kraichnan 1965, Boldyrev 2006) B°>b, *IK version*: long time scale:  $\tau = t_{NL} B^{\circ}/b$  (2A) IK scaling:  $u^4 \approx l$ ;  $u \approx l^{1/4}$ ;  $u^2 = l^{1/2}$ ; ...  $u^p \approx l^{p/4}$  $(2\mathbf{B})$ Energy spectrum:  $u^2 \approx kE_k = E_k = k^{-3/2}$ 

3. Very slow coupling (Dobrowolny Mangeney Veltri 1980, Grappin et al 1982, 1983) monodirectional Alfvén waves => zero coupling

### Magnetic spectrum: power-law range

### At 1 AU magnetic **power-law range extends** on ≈ three decades

Wind mission from 1995 May 23 to July 23

Ch. Salem, thesis, 2000 Salem Mangeney Bale Veltri 2009



# Kinetic $\neq$ Magnetic

### Magnetic spectrum scaling as k<sup>-5/3</sup> **Kinetic spectrum scaling as k**-3/2

Exponents  $\zeta(p)$  of the structure functions:  $\langle \delta X(\tau) | P \rangle = \langle | X(t+\tau) - X(t) | P \rangle \approx \tau^{\xi(p)}$ 



# Pure K41/IK scaling...



# Summary

**Observations** 

Incompressible MHD simulations



Wind mission Salem et al 2009  $\mathbf{E}_{\mathbf{B}} \approx \mathbf{k}^{-3/2}$ 

**E**<sub>V</sub> : no definite slope  $\mathbf{E}_{\mathbf{B}} - \mathbf{E}_{\mathbf{V}} \approx \mathbf{k}^{-2}$ 

Periodic MHD 3D simulations with mean field Müller Grappin 2005 Closure models Grappin et al 1983

# But turbulent properties at 1 AU are not invariable: they vary with proton temperature

•Figure shows **nine frequency bands** from one day down to one minute

One shows outward mode energy Magnetic energy would give the same result

•The band between hour and minute shows synchronized variations 80% correlation with proton temperature variations

• This temperature synchronized range is the same as the 5/3 frequency range

•Its slope is NOT constant with time: it varies ALSO with proton temperature



Measuring day by day scaling (Helios mission)... Magnetic Magnetic vs Kinetic spectral slope (Helios 1 mission) mВ slope (b) 1.808 5/3 slope a :07 1.6 1.4 1.2 3/2 slope 0.8 0.6 0.8 1.2 1.4 1.6 1.8 2 mV(slope of kinetic spectrum) b **Kinetic slope** 

Large percentage of the population NOT in the spot (3/2,5/3)Helios 1 mission, 118 Days of minimum solar activity 1974-1975 Grappin Velli Mangeney 1991



Large percentage of the population NOT in the spot (3/2,5/3) Helios 1 mission, 118 Days of minimum solar activity 1974-1975 Grappin Velli Mangeney 1991

# Flat spectra are hot



During solar minimum, the RED population is that of HOT, FAST streams which are dominant

Grappin Velli Mangeney 1991

# Flat population NOT relaxed Using **slow coupling time** as in IK: $t^* = t_{NL} \ge B^{\circ}/b$ Number of slow coupling times during transport 0.1Hour т+ 3 min 10 $T_p$ 100 120 80 60 20 40 0 DAY

=> Hour scales NOT relaxed in Hot streams

Grappin Velli Mangeney 1991



# II Heating issue: trying to reveal time scales

Energy equation



+ Measured gradient  $T_p \approx 1/R^{0.9\pm0.1}$ (from Helios mission, *Freeman et al 92*, *Totten et al 95*) •  $\rightarrow$  "observed" heat flux depending on V [km/s] and T [K]

 $\epsilon_{heat} = 3.6 \times 10^{-5} T_{pr} V_{SW} [J/(kg s)],$ 

=> Testing two theoretical heating rates:  
• the **fast one** (K41):  

$$\epsilon_{Kol} = (2\pi/V_{SW})\nu^{5/2}[(1+R_A)(5/3)(P_B(\nu)/\mu_0m_pn_p)/C_K]^{3/2},$$
  
• the **slow one** (IK):  
 $\epsilon_{Kr} = (2\pi/V_{SW})V_A^{-1}\nu^3[(3/2)(P_B(\nu)/\mu_0m_pn_p)/A]^2. \rightarrow 0$  when  $V_A \rightarrow 0$ 

Vasquez Smith Hamilton MacBride Leamon 2007



# Matching phenomenology and observations



•IK phenomenology better matches "observed" heating rate, •but temperature scaling not very good

### Data from ACE mission 1998-2002

NB Good correlation of *theoretical* heating rates with temperature comes from good correlation of turbulent amplitude with temperature (*Grappin Mangeney Marsch 1990*)



# **III** Anisotropy

Anisotropy of MHD turbulence with mean field POOR NL coupling parallel to B° (weakening by phase variations) Strauss 1976, Montgomery Turner 1981, Shebalin Matthaeus Montgomery 1983 Grappin 1986

=> Spectrum should be mainly **perpendicular to B°** <=> Autocorrelation should be mainly **// to B°** 



# Autocorrelation $\approx$ isotropic !



autocorrelation  $\langle \delta B_i(\mathbf{r'}) \delta B_i(\mathbf{r'+r}) \rangle$ Units of 10<sup>5</sup> km (average: [3 min, 2 hours]

Conclusion  $\perp$  component NOT dominant at small scales

•Standard interpretation: // component = linear waves (present from start) ⊥ **component** = *turbulent component* 

### 3D spectrum still more exotic (using k-filtering)

![](_page_16_Figure_1.jpeg)

is NOT a symmetry axis ...OR there is another one... see also Bieber and Bieber 1999

![](_page_16_Figure_3.jpeg)

Narita Glassmeier Sahraoui Goldstein 2010

Separating fast and slow wind

![](_page_17_Figure_2.jpeg)

### What the wind does to spatial structures

1. Expansion of the wind transforms // structures into  $\perp => \mathbf{k}_{\perp}$  into  $\mathbf{k}_{\prime\prime}$ NB Here "//"  $<=> // \hat{e}_r$ , " $\perp$ " <=> " $\perp \hat{e}_r$ " 2. nonlinear coupling  $\perp$  to radial are reduced/delayed 3. Close enough to Sun,  $B^{\circ} \approx$  radial, hence **// to \hat{\mathbf{er}} \leq \mathbf{F} / \mathbf{to B}^{\circ}** 

### => Expansion favours isotropization of spectrum

![](_page_18_Figure_3.jpeg)

1.5D and 2.5D MHD: Grappin Velli Mangeney 1993, Grappin Velli 1996 Also (Hybrid): Hellinger et al 2003, 2005

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_19_Figure_0.jpeg)

Time for cascade perp to B°: t<sub>NL</sub> Time for expansion:  $t_{exp} = (divU)^{-1} \approx R/(2U)$ => 1 Day at 1AU, 0.1 Day at 0.1 AU => Expansion important ( $t_{exp} < t_{NL}$ ) only at large scales

BUT Alfvénic turbulence in fast wind has **large effective t<sub>NL</sub>** because z-<<z+\* => explains why // spectrum can dominate in fast wind

\* Dobrowolny Mangeney Veltri 1980, Grappin Frisch Pouquet Léorat 1982 Grappin Velli Mangeney 1991

# Summary

## 1. <u>Scaling</u>

•Observed **average** scaling (V-slope=3/2, B-slope=5/3) differs from MHD simulations

•Hot streams show flatter spectra, with strong expansion effect

### 2. <u>Heating</u>

•Heating SLOW compared to K41 prediction

•But good match of IK heating might be coincidence, as dominant B spectrum not follows IK scaling

### 3. <u>Anisotropy</u>

- shows // component that might be made of linear waves,
- but also might result from strong expansion effects + NL

### Conclusion:

•Standard Kolmogorov cascade NOT a good model: SW turbulence is a *slow process*, comparable to IK cascade

•expansion probably plays a significant role (together with Alfvénicity) •direct 3D MHD simulations with expanding box model (Grappin Velli Mangeney *1993*) are needed

![](_page_20_Picture_16.jpeg)